Proper name retrieval from diachronic documents for automatic speech transcription using lexical and temporal context
نویسندگان
چکیده
Proper names are usually key to understanding the information contained in a document. Our work focuses on increasing the vocabulary coverage of a speech transcription system by automatically retrieving new proper names from contemporary diachronic text documents. The idea is to use in-vocabulary proper names as an anchor to collect new linked proper names from the diachronic corpus. Our assumption is that time is an important feature for capturing name-to-context dependencies, that was confirmed by temporal mismatch experiments. We studied a method based on Mutual Information and proposed a new method based on cosine-similarity measure that dynamically augment the automatic speech recognition system vocabulary. Recognition results show a significant reduction of the word error rate using augmented vocabulary for broadcast news transcription.
منابع مشابه
Continuous word representation using neural networks for proper name retrieval from diachronic documents
Developing high-quality transcription systems for very large vocabulary corpora is a challenging task. Proper names are usually key to understanding the information contained in a document. One approach for increasing the vocabulary coverage of a speech transcription system is to automatically retrieve new proper names from contemporary diachronic text documents. In recent years, neural network...
متن کاملAjout de nouveaux noms propres au vocabulaire d'un système de transcription en utilisant un corpus diachronique
Proper names are usually keys to understand the information contained in a document. Our work focuses on increasing the vocabulary size of a speech transcription system by automatically retrieving proper names from contemporary diachronic text corpus. We assume that some proper names appear in documents relating to the same time period and in similar lexical contexts. We proposed methods that d...
متن کاملNeural Networks Revisited for Proper Name Retrieval from Diachronic Documents
Developing high-quality transcription systems for very large vocabulary corpora is a challenging task. Proper names are usually key to understanding the information contained in a document. To increase the vocabulary coverage, a huge amount of text data should be used. In this paper, we extend the previously proposed neural networks for word embedding models: word vector representation proposed...
متن کاملHow Diachronic Text Corpora Affect Context based Retrieval of OOV Proper Names for Audio News
Out-Of-Vocabulary (OOV) words missed by Large Vocabulary Continuous Speech Recognition (LVCSR) systems can be recovered with the help of topic and semantic context of the OOV words captured from a diachronic text corpus. In this paper we investigate how the choice of documents for the diachronic text corpora affects the retrieval of OOV Proper Names (PNs) relevant to an audio document. We first...
متن کاملAutomatic Construction of Persian ICT WordNet using Princeton WordNet
WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014